Arkansas Department of Corrections North Central Arkansas Unit

10 Prison Circle Calico Rock, Arkansas 72 159

Prepared By: McClelland Consulting Engineers, Inc.

Mr. Danny Blankenship,

ADOC-North Central Arkansas Regional Unit

Sam Gates,

MCE Environmental Scientist

Annual Report 2014

Arkansas Department of Corrections North Central Arkansas Unit 10 Prison Circle Calico Rock, AR 72159

Permit No. 5124-WR-1

Prepared By:

McClelland Consulting Engineers, Inc. 900 W. Markham Street
Little Rock, Arkansas 72201
501-371-0272

May, 2015

TABLE OF CONTENTS

		Page No.
1.0	Land Application Dates	1
2.0	Land Application Locations	1
3.0	Quantities of Biosolids Applied	1
4.0	Methods of Application	2
5.0	Cover Crop Information	2
6.0	Amount of Nitrogen Applied	2
7.0	Total Elements Added in 2014	3
8.0	Total Elements Applied	3
9.0	Biosolids Analysis, Soil Analysis and Biosolids Certification	4

Appendix 1: Biosolids Analysis

Appendix 2: Land Application Site Soil Analysis

Appendix 3: Calculations

Appendix 4: Land Application Summaries

1.0 Land Application Dates

In the year 2014 the ADOC-East Arkansas Unit land applied biosolids from the treatment of sanitary and food preparation waste on sites listed in Condition No. 5 of Part II of the permit at 326 Lee 601 Brickeys, AR 72320 in Lee County, AR. The land applications are summarized below:

Land Application Dates								
Date	Location							
3-20-14	East							
10-24-14	North							
12-30-14	North							
1-30-15	East							
2-6-15	East							
2-12-15	East							
3-3-15	East							
3-6-15	North							
3-10-15	North							
3-16-15	North							
3-17-15	North							
3-19-15	North							
3-30-15	East							

Although some of the land applications took place in the year 2015 they will be used for the 2014 annual report because the land applications are over the course of 12 months.

2.0 Land Application Locations

As stated under Land Application Dates no land application of biosolids occurred in the year 2014. The following table lists the land application locations as described under Permit No. 5226-W:

Biosolids Application Sites								
Field No.	Lat	Long	Acres					
1-North	36° 10' 18.89"N	92° 08' 09.96"W	19.91					
2-East	36° 09' 50.46"N	92° 08' 35.67"W	22.43					

3.0 Quantities of Biosolids Applied

The ADOC-East Arkansas Unit reported land applications beginning in March 2014 and ending in March 2015, therefore the quantity of applied biosolids is representative of this time period. To derive the dry tons-per acre-per year it was assumed that the dry sludge density was 8% of the wet sludge density. Therefore the assumed dry sludge density was 112 kg/m³. The amount of dry sludge applied to each location was recorded by the Maintenance Supervisor and is attached in Appendix 4. Through simple conversions the amount of dry tons per year was calculated for each

application site. It was also assumed that this dry sludge was uniformly applied at the application site. Assuming this allowed the calculation of dry tons-per acre-per year by simply dividing the dry tons per year by each application sites acreage. The calculation of biosolids applied in gallons-per acre-per year was done by taking the sum of the reported amount of wet sludge applied and dividing it by the application sites acreage. The East application site did not have any reported application of wet sludge. See Appendix 3 for calcilations.

Quantity of Applied Biosolids								
Location	Biosolids Dry Tons/Acre-Year	Biosolids Gallons/Acre-Year						
North	.171	1115.02						
East	.215	NA						

4.0 Methods of Application

The method of application used by the ADOC-North Central Arkansas Unit follows ADEQ guidelines to prevent any undesired effects due to the land application of biosolids. Typically the existing permit requires Class B Biosolids be transported to the land application site in a closed container and surface applied with a manure spreader. The surface applied biosolids were evenly distributed over the entire application area using a small tractor. The biosolids were applied in two forms; dry biosolids and a biosolids sludge, both of which were covered with soil afterward. The property boundaries, buffer zone lines, and an interior grid of the site were marked during land application. No biosolids were stored at the land application sites, and any remaining biosolids were returned to the drying beds at the wastewater treatment plant.

5.0 Cover Crop Information

The cover crop at the land application sites are comprised mainly of fescue and other field grasses. The expected nitrogen uptake for these grasses is 175 – 300 kg/ha annually based on Soil Science Society of America – "Nutrient Uptake by Warm Seasonal Perennial Grass"-2003.

6.0 Amount of Nitrogen Applied

In the year 2014 the ADOC-North Central Arkansas Unit land application rates were .617 Dry Tons/Acre-Yr at the north land application site and .215 Dry Tons/Acre-Yr at the east land application site. Using these land application rates it was determined that approximately 50.4 lb/Acre-Yr of organic nitrogen was applied to the north land application site. Of the 50.4 lb/Acre of applied nitrogen approximately 20.8 lb/Acre is considered Plant Available Nitrogen (PAN). For the east land application site it was determined that approximately 15.8 lb/Acre of organic nitrogen was applied to the north land application site. Of the 15.8 lb/Acre of applied nitrogen approximately 6.5 lb/Acre is considered Plant Available Nitrogen (PAN). Calculations for this summary can be found

in Appendix 3.

7.0 Total Elements Added in 2014

In the year 2014 the ADOC-North Central Arkansas Unit land application rates were .687 Dry Tons/Acre-Yr at the north land application site and .215 Dry Tons/Acre-Yr at the east land application site. Based on these land application rates the amount of each element added in 2014 is summarized below:

Parameter	North Pounds/Year	East Pounds /Year		
Arsenic	0.137	0.048		
Cadmium	0.011	0.004		
Copper	5.471	1.929		
Lead	0.109	0.039		
Mercury	0.009	0.003		
Molybdenum	0.145	0.051		
Nickel	0.301	0.106		
Selenium	0.191	0.068		
Zinc	6.839	2.411		
PCB's	0.001	0.000		
PCB – Decachlorobiphenyl	3.119	1.100		
Nitrate	0.055	0.019		
Nitrite	0.055	0.019		
Ammonia	227.058	80.053		
TKN	1231.035	434.021		
Total Phospohorus	355.632	125.384		
Total Potassium	38.299	13.503		
Sodium Absorption Rate (SAR Units)	2.1			
Total Solids(Percent Weight)	31			
pH (pH Scale 0-14)	6	i.9		

The derivation of these numbers can be summarized by converting the concentrations of each parameter given in mg/kg to lb/Ton. Then multiplying by the calculated land application rate in Dry Ton/Acre-Yr gives the lb/Acre-Yr application rate. By multiplying the number of acres of each land application site the lb/Yr is determined for each parameter. Calculations are summarized in Appendix 3.

8.0 Total Elements Applied

The sludge analysis information is adequate for the year 2013 and 2014, however in the years 2011 & 2012 there is not enough information to attribute to this annual report of total elements

applied. Therefore the amount of each element below is only representative of the years 2013 & 2014:

Parameter	North Pounds	East Pounds
Arsenic	0.236	0.138
Cadmium	0.019	0.011
Copper	6.936	3.260
Lead	0.189	0.111
Mercury	0.011	0.005
Molybdenum	0.248	0.145
Nickel	0.439	0.232
Selenium	2.171	1.866
Zinc	6.855	2.426
PCB's	0.017	0.015
PCB – Decachlorobiphenyl	42.700	37.077
Nitrate	237.541	215.886
Nitrite	73.280	66.578
Ammonia	242.692	94.264
TKN	1231.035	434.021
Total Phospohorus	355.632	125.384
Total Potassium	38.299	13.503
Average Total Solids(Percent Weight)	4	7
Average pH (pH Scale 0-14)	7.0	65

9.0 Biosolids Analysis, Soil Analysis and Biosolids Certification

Biosolids Analysis was conducted for the treated sludge in January 2015 and Soil Analysis was conducted for the land application sites in February 2015 (both are attached in the Appendix). No biosolids certification information was readily available and will not be included in this annual report.

ADOC-North Central Arkansas Unit

APPENDIX 1: BIOSOLIDS ANALYSIS

May 13, 2015 Control No. 190302 Page 1 of 7

McClelland Consulting Engineers, Inc. ATTN: Mr. Matt Bienvenu Post Office Box 34087 Little Rock, AR 72203-4087

This report contains the analytical results and supporting information for the sample submitted on May 8, 2015. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

Jøhn Overbey aboratory Director

This document has been distributed to the following:

PDF cc: McClelland Consulting Engineers, Inc.

ATTN: Mr. Matt Bienvenu

mbienvenu@mcclelland-engrs.com

McClelland Consulting Engineers, Inc.

ATTN: Mr. Dan Beranek

dberanek@mcclelland-engrs.com

May 13, 2015 Control No. 190302

Page 2 of 7

McClelland Consulting Engineers, Inc. Post Office Box 34087 Little Rock, AR 72203-4087

SAMPLE INFORMATION

Project Description:

One (1) sludge sample(s) received on May 8, 2015

LABORATORIES

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
190302-1	Calico Rock Sludge	06-May-2015 1131	1

Notes:

1. Holding time was expired at time of receipt

Qualifiers:

- H Analytical holding time exceeded regulatory requirements
- X Spiking level is invalid due to the high concentration of analyte in the spiked sample

Case Narrative:

Analysis of soils/sludges are reported on a dry-weight basis unless otherwise specified.

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.

"Standard Methods for the Examination of Water and Wastewaters", (SM).

"American Society for Testing and Materials" (ASTM).

"Association of Analytical Chemists" (AOAC).

May 13, 2015 Control No. 190302 Page 3 of 7

ANALYTICAL RESULTS

AIC No. 190302-1

Sample Identification: Calico Rock Sludge 06-May-2015 1131

Analyte		Result	RL	Units	Qualifier
pH EPA 9045C	Prep: 08-May-2015 1545 by 93	6.9 Analyzed: 08-M	1ay-2015 1815 by 93	Units Batch: W51864	Н
Electrical Conductivity Mod. EPA 9050A	Prep: 12-May-2015 1044 by 93	2800 Analyzed: 12-M	2 lay-2015 1245 by 93	umho/cm Batch: W51891	
Cation-Exchange Capacity Mod. EPA 9080		34 Analyzed: 12-M	0.4 ay-2015 0840 by 308	meq/100g Batch: W51889	
Total Solids SM 2540 G 1997	Prep: 08-May-2015 1521 by 100	31 Analyzed: 11-M	0.01 1ay-2015 1014 by 100	wt % Batch: W51868	
Volatile Solids SM 2540 G 1997	Prep: 08-May-2015 1522 by 100	63 Analyzed: 11-M	0.01 ay-2015 1014 by 100	wt % Batch: W51868	
Ammonia as N SM 4500-NH3 B,G 1997	Prep: 11-May-2015 1222 by 93	8300 Analyzed; 12-M	2000 lay-2015 0922 by 308	mg/Kg Balch: W51881	
Total Kjeldahl Nitrogen SM 4500-Norg D 1997	Prep: 11-May-2015 1648 by 308	45000 Analyzed: 12-M	20000 lay-2015 1249 by 308	mg/Kg Balch: W51885	
Arsenic EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313-	<: 5 Analyzed; 12-M	5 lay-2015 1510 by 302	mg/Kg Batch; S38914	
Cadmium EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	< 0.4 Analyzed: 12-M	0.4 lay-2015 1510 by 302	mg/Kg Batch: S38914	
Copper EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	200 Analyzed: 12-M	0.6 lay-2015 1510 by 302	mg/Kg Batch: S38914	
Lead EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	< 4 Analyzed: 12-M	4 lay-2015 1510 by 302	mg/Kg Batch: S38914	
Magnesium EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	4300 Analyzed: 12-M	3 lay-2015 1510 by 302	mg/Kg Batch: S38914	
Molybdenum EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	5.3 Analyzed: 12-M	0.8 lay-2015 1510 by 302	mg/Kg Batch: S38914	
Nickel EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	11 Analyzed: 12-M	1 hay-2015 1510 by 302	mg/Kg Batch: S38914	
Phosphorus EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	13000 Analyzed: 12-M	100 lay-2015 1654 by 302	mg/Kg Batch: S38914	
Potassium EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	1400 Analyzed: 12-M	100 lay-2015 1510 by 302	mg/Kg Batch: S38914	
Selenium EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	< 7 Analyzed: 12-M	7 tay-2015 1510 by 302	mg/Kg Batch: S38914	
Sodium Absorption Ratio EPA 3051A, 6010C		2.1 Analyzed: 11-M	lay-2015 1541 by 302	Batch: S38914	
Zinc EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	250 Analyzed: 12-M	0.2 láy-2015 1510 by 302	mg/Kg Batch: S38914	
Mercury EPA 74718	Prep: 11-May-2015 1050 by 313	0.33	0.1 ay-2015 1411 by 302	mg/Kg Batch: S38909	

May 13, 2015 Control No. 190302 Page 4 of 7

McCtelland Consulting Engineers, Inc. Post Office Box 34087 Little Rock, AR 72203-4087

ANALYTICAL RESULTS

AIC No. 190302-1 (Continued)

Sample Identification: Calico Rock Sludge 06-May-2015 1131

Analyte		Result	RL	Units	Qualifier
Nitrate as N EPA 9056A	Prep: 08-May-2015 1501-by 07	< 2 Analyzed: 08-May-	2 2015 1640 by 302	mg/Kg Batch: C17697	H
Nitrite as N EPA 9056A	Prep: 08-Mäy-2015 1501 by 07	< 2 Analyzed: 08-May-	2 2015 1640 by 302	mg/Kg Batch: C17697	Н
Polychlorinated Biphenyls PCB 1016 EPA 3550C, 8082A	s (PCBs) By EPA 3550C, Prep: 11-May-2015 0948 by 285	8082A < 0.041 Analyzed: 11-May-	0.041 2015 1635 by 306	mg/Kg Batch: G10120	
PCB 1221 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.041 Analyzed: 11-May-	0.041 2015 1635 by 306	mg/Kg Baich: G10120	
PCB 1232 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.041 Analyzed: 11-May-	0.041 2015 1635 by 306	mg/Kg Batch: G10120	
PCB 1242 EPA 3550C, 8082A	Prep: 1.1-May-2015 0948 by 285	< 0.041 Analyzed: 11-May-	0.041 2015 1635 by 306	mg/Kg Batch: G10120	
PCB 1248 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.041 Analyzed: 11-May-	0.041 2015 1635 by 306	mg/Kg Balch: G10120	
PCB 1254 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.041 Analyzed: 11-May-	0.041 2015 1635 by 306	mg/Kg Batch: G10120	
PCB 1260 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.041 Analyzed: 11-May-	0.041 2015 1635 by 306	mg/Kg Batch: G10120	
Surrogate: Decachlorobipher EPA 3550C, 8082A	nyl (15.5-146%) Prep: 11-May-2015 0948 by 285	114 Analyzed: 11-May-	2015 1635 by 306	% Batch: G10120	

May 13, 2015 Control No. 190302 Page 5 of 7

Ī

DUPLICATE RESULTS

					RPD				
Analyte		AIC No.	Result	RPD	Limit	Preparation Date	Analysis Date	Dil	Qual
pH		190275-1	7.1 Units			08May15 1113 by 93	08May15 1245 by 93		- —
	Batch: W51864	Duplicate	7.2 Units	0.559	5.00	08May15 1113 by 93	08May15 1245 by 93		
Total Solids		190246-1	5.2 wt %			08May15 1500 by 100	11May15 1014 by 100		
	Batch: W51868	Duplicate	5.2 wt %	1.81	10.0	08May15 1501 by 100	11May15 1014 by 100		
Volatile Solids		190246-1	84 wt %			08May15 1501 by 100	11May15 1014 by 100		
	Batch: W51868	Duplicate	84 wt %	0.757	20.0	08May15 1501 by 100	11May15 1014 by 100		
Cation-Exchange Capacity		190302-1	34 meq/100g				12May 15 0840 by 308		
•	Batch: W51889	Duplicate	36 meq/100g	5.91	20.4		12May 15 0840 by 308		
Electrical Conductivity		190306-1	510 umho/cm			12May15 1044 by 93	12May15 1245 by 93		
·	Batch: W51891	Duplicate	520 umhe/cm	1.93	20.0	12May15 1045 by 93	12May15 1245 by 93		

LABORATORY CONTROL SAMPLE RESULTS

Analyte	Spike Amount	%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil	Qual
pH	•	100	98.0-102		_ =	W51864	08May15 1113 by 93	08May15 1245 by 93		4001
Electrical Conductivity	1410 umho/cm	102	97.1-105			W51891	12May15 1045 by 93	12May15 1245 by 93		
Ammonia as N	20,0 mg/Kg	106	80.0-120			W51881	11May15 1222 by 93	11May15 1825 by 93		
Total Kjeldahl Nitrogen	50.0 mg/Kg	113	80.0-120			W51885	11May15 1648 by 308	12May15 1244 by 308		
Arsenic	500 mg/Kg	99.4	85.0-1.15			S38914	11May15 1541 by 313	12May 15 1430 by 302		
Cadmium	500 mg/Kg	101	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302		
Copper	50.0 mg/Kg	100	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302		
Lead	500 mg/Kg	103	85.0-115			S38914	11May15 1541 by 313	12May 15 1430 by 302		
Magnesium	1000 mg/Kg	102	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302		
Molybdenum	50.0 mg/Kg	98,9	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302		
Nickel	50.0 mg/Kg	102	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302		
Phosphorus	500 mg/Kg	97.0	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302		
Potassium	1000 mg/Kg	101	85,0-115			S38914	11May15 1541 by 313	12May15 1430 by 302		
Selenium	500 mg/Kg	99.5	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302		
Zinc	50.0 mg/Kg	102	85.0-115			S38914	11May15 1541 by 313	12May 15 1430 by 302		
Mercury	1.25 mg/Kg	105	85.0-115			S38909	11May15 1050 by 313	11May15 1324 by 302		
Nitrate as N	40.0 mg/Kg	99.4	90.0-110			C17697	08May15 0906 by 07	08May15 1236 by 07		
Nitrite as N	40.0 mg/Kg	99.5	90.0-110			C17697	08May15 0906 by 07	08May15 1236 by 07		
Polychlorinated Bipheny	yls (PCBs)									
PCB 1254	0.167 mg/Kg	94.2	31.1-126			G10120	11May15 0948 by 285	11May15 1535 by 306		
Polychlorinated Biphenyls Decachlorobiphenyl	(PCBs) Surrogates: 50.0 ug/Kg	: 109	7,20-146			G10120	11May15 0948 by 285	11May15 1535 by 306		

May 13, 2015 Control No. 190302 Page 6 of 7

McClelland Consulting Engineers, Inc. Post Office Box 34087 Little Rock, AR 72203-4087

MATRIX SPIKE SAMPLE RESULTS

Analyte	Spike Sample Amount	%	Limits	Batch	Preparation Date	Analysis Date	DII	Qual
Ámmonia as N	190306-1 20.1 mg/Kg 190306-1 20.1 mg/Kg Relative Percent Difference:	1.11	80.0-120 80.0-120 25.0	W51881 W51881 W51881	11May15 1222 by 93 11May15 1222 by 93	11May15 2013 by 93 11May15 2014 by 93		X
Total Kjeldahl Nitrogen	190275-1 172 mg/Kg 190275-1 166 mg/Kg Relative Percent Difference:	- - 7.83	80.0-120 80.0-120 20.0	W51885 W51885 W51885	11May15 1648 by 308 11May15 1648 by 308	12May15 1315 by 308 12May15 1316 by 308		×
Arsenic	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference:	95.7 97.1 1.45	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May 15 1435 by 302 12May 15 1441 by 302		
Cadmium	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference;	83.6 83.8 0.306	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Copper	190305-1 49.7 mg/Kg 190305-1 49.7 mg/Kg Relative Percent Difference:	105 102 2.69	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Lead	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference:	99,4 99,9 0.502	75,0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Magnesium	190305-1 994 mg/Kg 190305-1 995 mg/Kg Relative Percent Difference:	- - 7.78	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		x x
Molybdenum	190305-1 49.7 mg/Kg 190305-1 49.7 mg/Kg Relative Percent Différence:	94.8 96.1 1.31	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Nickel	190305-1 49.7 mg/Kg 190305-1 49.7 mg/Kg Relative Percent Difference:	103 102 0.665	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Phosphorus	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference;	92.3 80.1 6.94	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Potassium	190305-1 994 mg/Kg 190305-1 995 mg/Kg Relative Percent Difference:	0,650	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		X X
Selenium	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference;	90.8 91.9 1.29	75.0-125 75.0-125 20.0	S38914 S38914 S38914		12May15 1435 by 302 12May15 1441 by 302		
Zinc	190305-1 49:7 mg/Kg 190305-1 49:7 mg/Kg Relative Percent Difference:	110 102 4.79	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Mercury	190305-1 2.34 mg/Kg 190305-1 2.49 mg/Kg Relative Percent Difference:	105 106 1,10	70.0-130 70.0-130 20.0	S38909 S38909 S38909	-	11May15 1328 by 302 11May15 1332 by 302		
Nitrate as N	190241-1 38.9 mg/Kg 190241-1 38.9 mg/Kg Relative Percent Difference:	85.3 86.0	80.0-120 80,0-120 10.0	C17697 C17697 C17697	08May15 0906 by 07 08May15 0906 by 07	08May15 1301 by 07 08May15 1325 by 07		
Nitrite as N	190241-1 38.9 mg/Kg 190241-1 38.9 mg/Kg Relative Percent Difference:	88.2 86.8 1.64	80.0-120 80.0-120 10.0	C17697 C17697 C17697	08May15 0906 by 07 08May15 0906 by 07	08May15 1301 by 07 08May15 1325 by 07		

May 13, 2015 Control No. 190302 Page 7 of 7

McClelland Consulting Engineers, Inc. Post-Office Box 34087 Little Rock, AR 72203-4087

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	%	Limits	Batch.	Preparation Date	Analysis Date	Dil	Qual
Polychlorinated Biphenyls	(PCBs)								
PCB 1254	190258-1	0.1667 mg/Kg	86.1	29.1-103	G10120	11May15 0948 by 285	11May15 1550 by 306		
	190258-1	0.1667 mg/Kg	94.5	29,1-103	G10120	11May15 0948 by 285	11 May 15 1805 by 306		
	Relative Pe	rcent Difference:	9.35	42.6	G10120				
Polychlorinated Biphenyls (PC	Bs) Surroga	tes:							
Decachlorobiphenyl	190258-1	50 ug/Kg	109	15,5-146	G10120	11May15 0948 by 285	11May15 1550 by 306		
	190258- 1	50 ug/Kg	84.6	15.5-146	G10120	11May15 0948 by 285	11May15 1605 by 306		

LABORATORY BLANK RESULTS

				QC			
Analyte	Result	RL	PQL	Sample	Preparation Date	Analysis Date	Qual
Electrical Conductivity	< 2 umho/cm	2	2	W51891-1	12May15 1045 by 93	12May15 1245 by 93	
Cation-Exchange Capacity	< 0.1 meq/100g	0.1	0.1	W51889-1		12May15 0840 by 308	
Total Solids	< 0.01 wt %	0.01	0.01	W51868-1	08May15 1501 by 100	11May15 1014 by 100	
Volatile Solids	< 0.01 wt %	0.01	0.01	W51868-1	08May15 1501 by 100	11May15 1014 by 100	
Ammonia as N	< 2 mg/Kg	2	2	W51881-1	11May15 1222 by 93	11May15 1623 by 93	
Total Kjeldahl Nitrogen	< 10 mg/Kg	10	10	W51885-1	11May15 1646 by 308	12May15 1243 by 308	
Arsenic	< 5 mg/Kg	5	5	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Cadmium	< 0.4 mg/Kg	0.4	0.4	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Copper	< 0.6 mg/Kg	0.6	0.6	\$38914-1	11May15 1541 by 313	12May15 1425 by 302	
Lead	< 4:mg/Kg	4	4	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Magnesium	< 3:mg/Kg	3	3	S38914-1	11May15 1541 by 313	12May 15 1425 by 302	
Molybdenum	< 0.8 mg/Kg	0.8	0.8	S38914-1	11May15 1541 by 313	12May 15 1425 by 302	
Nickel	< 1 mg/Kg	1	1	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Phosphorus	< 10 mg/Kg	10	10	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Potassium	< 100 mg/Kg	100	100	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Selenium	< 7 mg/Kg	7	7	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Zinc	< 0.2 mg/Kg	0.2	0.2	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Mercury	< 0.1 mg/Kg	0.1	0.1	S38909-1	11May15 1050 by 313	11May15 1320 by 302	
Nitrate as N	< 0.5 mg/Kg	0.5	0.5	C17697-1	08May15 0906 by 07	08May15 1212 by 07	
Nitrite as N	< 0,5 mg/Kg	0.5	0.5	C17697-1	08May15 0906 by 07	08May15 1212 by 07	
Polychlorinated Biphenyls (PCBs)							
PCB 1016	< 0,013 mg/Kg	0.013	0.013	G10120-1	11May15 0946 by 285	11May15 1520 by 306	
PCB 1221	< 0.013 mig/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1232	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1242	< 0.013 mg/Kg	0.013	0,013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1248	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0946 by 285	11May15 1520 by 306	
PCB 1254	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1260	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May 15 0948 by 285	11May15 1520 by 306	
Polychlorinated Biphenyls (PCBs) Surro							
Decachlorobiphenyl (7.20-146%)	83.4 %			G10120-1	11May15 0948 by 285	11May15 1520 by 306	

/	CORPOR	ACTICAL .	•	CH	AIN (OF C	US	TOL	l Yo	AN	ML,	YSIS	RE	Ql	JES	ST F	-OF	M				. '		2		PAGE OF
	LABORA	IOHIES							_	_	-	AN	LY	SES	RE	QU	EST	ED	_	_		_	-	g.	-	AIC CONTROL NO:
Client	MCE				No.		OF OF	1	Solids	17.53	T	П	T.	1	Š	:			I NA		N	יווויי	an Kar	Town - Local -	TO THE PARTY OF	AIC PROPOSAL NO:
Proje	d •			S	MATR	EX	0	1	S 511	ia	3	1	W. I. S.		ron	35 lum	됳.	1	1	9.5	3	white	Absorption !			Carrier:
roje	Matt	B		W		20	T		a ti	mannia	Senic	2000		icke	5	3	ZINC .	er cur	KULLIN	3	7	3	A.			Received Temperature (
Vlana Samp	Jessich B	rown	R	CON	o	100	L	H		Ī	2	9	Y S	N	युव	3	201	य	1	ME	Į.	1	Social	T C		Remarks
y. VC	Sample Identification	Date/Time		PR	1	2	8	1	1./	7	1	1	1.	1	1	1	V	A	N	И	V	1	1	W		
1	calicolock	5/6/15 1131	V	+	1	4	-1	VV	1	4	1	1	۲	Í		1		T	I			I		L	Ц	
-			1	+-	H	-	+	1,	H	†	1	T	T	П	1	T			L		1	1	1	L	Ц	
			+	+	H	+	1	+	H	1	1	H	1		I	1			L	Ц	1	1	1	L	H	
			+	+	H	7	7	1	П	T		E		1		L		1	L		1	1	-	H	H	•
			-	+	H	7	1			I	•	<u>.</u>	L		1.	Ŀ	H	1	-	H	+	+	+	H	+	
			+	1	\Box	T	\Box	\prod		1	Ŀ	4	Ц	4	+	1	H	+	\vdash	4	+	+	-		I	Fleid pH collection
		Container Type	1	丰	\Box	7	P	+	H	+	\pm			1	土	上	口	1		1	I	Ļ	L		m'	Buffer: Tricsulfate
		Preservative		لل	-	/=W	OAV	dah	-42			•	H:	Na	S K	bp	HI	_	_		_	Z	۳Z	he	-	tatto .
	G ≠ Glas NO = no	S=5#	ic acid	pH2		Nek	1	4	dra	100					5			٠, ج	40	- 1.	*	1		· R	0 1	Boxes 5/6/15.
NOR	ound Tipe Requested MAL or EXPEDITE ted results requested	hr	- N	٠.	= :		F	200		red		201		10		ma	11-			1	7	20	d in	2	b	5-8-15
the si	aud AlC constant	Fax	<u>·</u>	_			- 1	1	20	M	D	Sic	W	1	5/	8/	12	<u>· i</u>	30		- 1.1		-10	1	UK	
-	Attention to						١	-			,					٠.			_	•	_		_	_	÷	FORM ODEO
•••		•				-		WS	5981	BA	02					•						•				

5/01

Annual	Report

APPENDIX 2: LAND APPLICATION SITE SOIL ANALYSIS

May 13, 2015 Control No. 190305 Page 1 of 7

McClelland Consulting Engineers, Inc. ATTN: Mr. Matt Bienvenu Post Office Box;34087 Little Rock, AR 72203-4087

This report contains the analytical results and supporting information for the sample submitted on May 8, 2015. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

John Overbey
Laboratory Director

This document has been distributed to the following:

PDF cc: McClelland Consulting Engineers, Inc.

ATTN: Mr. Matt Bienvenu mbienvenu@mcclelland-engrs.com

McClelland Consulting Engineers, Inc.

ATTN: Mr. Dan Beranek

dberanek@mcclelland-engrs.com

www.AmericanInterplex.com

May 13, 2015 Control No. 190305 Page 2 of 7

McClelland Consulting Engineers, Inc. Post Office Box 34087 Little Rock; AR 72203-4087

SAMPLE INFORMATION

Project Description:

One (1) soil sample(s) received on May 8, 2015

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
190305-1	Calico Rock Soil	06-May-2015 1131	1

Notes:

Holding time was expired at time of receipt 1

Qualifiers:

- Analytical holding time exceeded regulatory requirements
- Spiking level is invalid due to the high concentration of analyte in the spiked sample Х

Case Narrative:

Analysis of soils/sludges are reported on a dry-weight basis unless otherwise specified.

- References: "Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).
- "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.
- "Standard Methods for the Examination of Water and Wastewaters", (SM).
- "American Society for Testing and Materials" (ASTM).
- "Association of Analytical Chemists" (AOAC)

May 13, 2015 Control No. 190305 Page 3 of 7

ANALYTICAL RESULTS

AIC No. 190305-1

Sample Identification: Calico Rock Soil 06-May-2015 1131

Analyte		Result	RL	Units	Qualifier
pH EPA 9045C	Prep: 08-May-2015 1545 by 93	6.5 Analyzed: 08-N	May-2015 1815 by 93	Units Batch: W51864	Н
Electrical Conductivity Mod. EPA 9050A	Prep: 12-May-2015 1044 by 93	48 Analyzed: 12-N	2 Nay-2015 1245 by 93	umho/cm Batch: W51891	
Cation-Exchange Capacity Mod. EPA 9080		7.2 Analyzed: 12-N	0.2 May-2015 0840 by 308	meq/100g Batch: W51889	
Total Solids SM 2540 G 1997	Prep: 08-May-2015 1521 by 100	94 Analyzed: 11-N	0.01 May-2015 1014 by 100	wt % Batch: W51868	
Volatile Solids SM 2540 G 1997	Prep: 08-May-2015 1522 by 100	5.0 Analyzed: 11-N	0.01 Nay-2015 1014 by 100	wt % Batch: W51868	
Ammonia as N SM 4500-NH3 B,G 1997	Prep: 11-May-2015 1222 by 93	89 Analyzed: 11-M	20 May-2015 1931 by 93	mg/Kg Batch: W51881	
Total Kjeldahl Nitrogen SM 4500-Norg D 1997	Prep: 11-May-2015 1648 by 308	2100 Analyzed: 12-N	400 May-2015 1318 by 308	mg/Kg Batch: W51885	
Arsenic EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	< 5 Analyzed: 12-M	5 May-2015 1446 by 302	mg/Kg Batch: S38914	
Cadmium EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	< 0.4 Analyzed: 12-N	0.4 May-2015 1446 by 302	mg/Kg Batch: S38914	
Copper EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	12 Analyzed; 12-M	0.6 May-2015 1446 by 302	mg/Kg Batch: S38914	
Lead EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	8.3 Analyzed: 12-N	4 May-2015 1446 by 302	mg/Kg Batch: S38914	
Magnesium EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	550 Analyzed: 12-N	3 May-2015 1446 by 302	mg/Kg Batch: S38914	
Molybdenum EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	< 0.8 Analyzed: 12-N	0.8 May-2015 1446 by 302	mg/Kg Batch: S38914	
Nickel EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	3.5 Analyzed: 12-M	1 May-2015 1446 by 302	mg/Kg Batch: S38914	
Phosphorus EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	440 Analyzed: 12-M	10 May-2015 1446 by 302	mg/Kg Batch: S38914	
Potassium EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	330 Analyzed: 12-M	100 May-2015 1446 by 302	mg/Kg Batch: S38914	
Selenium EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	< 7 Analyzed: 12-M	7 May-2015 1446 by 302	mg/Kg Batch: S38914	
Sodium Absorption Ratio EPA 3051A, 6010C		0.42 Analyzed: 11-N	May-2015 1541 by 302	Batch: S38914	
Zinc EPA 3051A, 6010C	Prep: 11-May-2015 1540 by 313	34 Analyzed: 12-M	0.2 May-2015 1446 by 302	mg/Kg Batch: S38914	
Mercury EPA 7471B	Prep: 11-May-2015 1050 by 313	< 0.1 Analyzed: 11-N	0.1 May-2015 1336 by 302	mg/Kg Batch: S38909	

May 13, 2015 Control No. 190305 Page 4 of 7

ANALYTICAL RESULTS

AIC No. 190305-1 (Continued)

Sample Identification: Calico Rock Soil 06-May-2015 1131

Analyte		Result	RL	Units	Qualifier
Nitrate as N EPA 9056A	Prep: 08-May-2015 1510 by 07	0.73 Analyzed: 08-Ma	0.5 y-2015 1704 by 302	mg/Kg Batch: C17697	Н
Nitrite as N EPA 9056A	Prep: 08-May-2015 1510 by 07	< 0.5 Analyzed: 08-Ma	0.5 y-2015 1704 by 302	mg/Kg Batch: C17697	Н
Polychlorinated Bipheny PCB 1016 EPA 3550C, 8082A	Is (PCBs) By EPA 3550C, Prep: 11-May-2015 0948 by 285	< 0.014	0.014 ny-2015 1650 by 306	mg/Kg Batch: G10120	
PCB 1221 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.014 Analyzed: 11-Ma	0.014 sy-2015 1650 by 306	mg/Kg Batch: G10120	
PCB 1232 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.014 Analyzed: 11-Ma	0.014 sy-2015 1650 by 306	mg/Kg Batch: G10120	
PCB 1242 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.014 Analyzed: 11-Ma	0.014 y-2015 1650 by 306	mg/Kg Batch: G10120	
PCB 1248 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.014 Analyzed: 11-Ma	0.014 ly-2015 1650 by 306	mg/Kg Batch: G10120	
PCB 1254 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.014 Analyzed: 11-Ma	0.014 y-2015 1650 by 306	mg/Kg Balch: G10120	
PCB 1260 EPA 3550C, 8082A	Prep: 11-May-2015 0948 by 285	< 0.014 Analyzed: 11-Ma	0.014 y-2015 1650 by 306	mg/Kg Batch: G10120	
Surrogate: Decachlorobipho EPA 3550C, 8082A	enyl (15.5-146%) Prep: 11-May-2015 0948 by 285	105 Analyzed: 11-Ma	y-2015 1650 by 306	% Batch: G10120	

May 13, 2015 Control No. 190305 Page 5 of 7

DUPLICATE RESULTS

Analyte		AIC No.	Result	RPD	RPD Limit	Preparation Date	Analysis Date	Dil	Qual
рН	Batch: W51864	190275-1 Duplicate	7.1 Units 7.2 Units	0.559	5.00	08May15 1113 by 93 08May15 1113 by 93	08May15 1245 by 93 08May15 1245 by 93		
Total Solids	Batch: W51868	190246-1 Duplicate	5.2 wt % 5.2 wt %	1.81	10.0	08May15 1500 by 100 08May15 1501 by 100			
Volatile Solids	Batch: W51868	190246-1 Duplicate	84 wt % 84 wt %	0.757	20.0	08May15 1501 by 100 08May15 1501 by 100			
Cation-Exchange Capacity	Batch: W51889	190302-1 Duplicate	34 meq/100g 36 meq/100g	5.91	20.4		12May15 0840 by 308 12May15 0840 by 308		
Electrical Conductivity	Batch: W51891	190306-1 Duplicate	510 umho/cm 520 umho/cm	1.93	20.0	12May15 1044 by 93 12May15 1045 by 93	12May15 1245 by 93 12May15 1245 by 93		

LABORATORY CONTROL SAMPLE RESULTS

	pike mount	%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date Dil Qua
pH -		100	98.0-102		_	W51864	08May15 1113 by 93	08May15 1245 by 93
Electrical Conductivity 14	110 umho/cm	102	97.1-105			W51891	12May15 1045 by 93	12May15 1245 by 93
Ammonia as N 20	0.0 mg/Kg	106	80.0-120			W51881	11May15 1222 by 93	11May15 1825 by 93
Total Kjeldahl Nitrogen 50	0.0 mg/Kg	113	80.0-120			W51885	11May15 1648 by 308	12May15 1244 by 308
Arsenic 50	00 mg/Kg	99.4	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Cadmium 50	00 mg/Kg	101	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Copper 50	0.0 mg/Kg	100	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Lead 50	00 mg/Kg	103	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Magnesium 10	000 mg/Kg	102	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Molybdenum 50	0.0 mg/Kg	98.9	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Nickel 50	0.0 mg/Kg	102	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Phosphorus 50	00 mg/Kg	97.0	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Potassium 10	000 mg/Kg	101	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Selenium 50	00 mg/Kg	99.5	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Zinc 50	0.0 mg/Kg	102	85.0-115			S38914	11May15 1541 by 313	12May15 1430 by 302
Mercury 1.	25 mg/Kg	105	85.0-115			S38909	11May15 1050 by 313	11May15 1324 by 302
Nitrate as N 40	0.0 mg/Kg	99.4	90,0-110			C17697	08May15 0906 by 07	08May15 1236 by 07
Nitrite as N 40	0.0 mg/Kg	99.5	90.0-110			C17697	08May15 0906 by 07	08May15 1236 by 07
Polychlorinated Biphenyls (PC	CBs)							
PCB 1254 0.	167 mg/Kg	94.2	31.1-126			G10120	11May15 0948 by 285	11May15 1535 by 306
Polychlorinated Biphenyls (PCBs)			700 115			040400	441445 0048 b. 005	14May 45 1525 by 200
Decachlorobiphenyl 50).0 ug/Kg	109	7.20-146			G10120	11May15 0948 by 285	11May15 1535 by 306

May 13, 2015 Control No. 190305 Page 6 of 7

McClelland Consulting Engineers, Inc. Post Office Box 34087 Little Rock, AR 72203-4087

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample Spike Amount	%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Ammonia as N	190306-1 20.1 mg/Kg 190306-1 20.1 mg/Kg Relative Percent Difference:	1.11	80.0-120 80.0-120 25.0	W51881 W51881 W51881	11May15 1222 by 93 11May15 1222 by 93	11May15 2013 by 93 11May15 2014 by 93		X
Total Kjeldahl Nitrogen	190275-1 172 mg/Kg 190275-1 166 mg/Kg Relative Percent Difference:	7.83	80.0-120 80.0-120 20.0	W51885 W51885 W51885	11May15 1648 by 308 11May15 1648 by 308	12May15 1315 by 308 12May15 1316 by 308		x
Arsenic	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference:	95.7 97.1 1.45	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Cadmium	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference:	83.6 83.8 0.306	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Copper	190305-1 49.7 mg/Kg 190305-1 49.7 mg/Kg Relative Percent Difference:	105 102 2.69	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Lead	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference:	99.4 99.9 0.502	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Magnesium	190305-1 994 mg/Kg 190305-1 995 mg/Kg Relative Percent Difference:	7.78	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		×
Molybdenum	190305-1 49.7 mg/Kg 190305-1 49.7 mg/Kg Relative Percent Difference:	94.8 96.1 1.31	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Nickel	190305-1 49.7 mg/Kg 190305-1 49.7 mg/Kg Relative Percent Difference:	103 102 0.665	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Phosphorus	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference:	92.3 80.1 6.94	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Potassium	190305-1 994 mg/Kg 190305-1 995 mg/Kg Relative Percent Difference:	0.650	75.0-125 75.0-125 20.0	S38914 S38914 S38914		12May15 1435 by 302 12May15 1441 by 302		×
Selenium	190305-1 497 mg/Kg 190305-1 497 mg/Kg Relative Percent Difference:	90.8 91.9 1.29	75.0-125 75.0-125 20.0	S38914 S38914 S38914	11May15 1541 by 313 11May15 1541 by 313	12May15 1435 by 302 12May15 1441 by 302		
Zinc	190305-1 49.7 mg/Kg 190305-1 49.7 mg/Kg Relative Percent Difference:	110 102 4.79	75.0-125 75.0-125 20.0	S38914 S38914 S38914		12May15 1435 by 302 12May15 1441 by 302		
Mercury	190305-1 2.34 mg/Kg 190305-1 2.49 mg/Kg Relative Percent Difference:	105 106 1.10	70.0-130 70.0-130 20.0	S38909 S38909 S38909		11May15 1328 by 302 11May15 1332 by 302		
Nitrate as N	190241-1 38.9 mg/Kg 190241-1 38.9 mg/Kg Relative Percent Difference:	85.3 86.0 0.780	80.0-120 80.0-120 10.0	C17697 C17697 C17697	08May15 0906 by 07 08May15 0906 by 07	08May15 1301 by 07 08May15 1325 by 07		
Nitrite as N	190241-1 38.9 mg/Kg 190241-1 38.9 mg/Kg Relative Percent Difference:	88.2 86.8	80.0-120 80.0-120 10.0	C17697 C17697 C17697	08May15 0906 by 07 08May15 0906 by 07	08May15 1301 by 07 08May15 1325 by 07		

May 13, 2015 Control No. 190305 Page 7 of 7

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Polychlorinated Biphenyls	(PCBs)								
PCB 1254	190258-1	0.1667 mg/Kg	86.1	29.1-103	G10120	11May15 0948 by 285	11May15 1550 by 306		
	190258-1	0.1667 mg/Kg	94.5	29.1-103	G10120	11May15 0948 by 285	11May15 1605 by 306		
	Relative Pe	rcent Difference:	9.35	42.6	G10120				
Polychlorinated Biphenyls (PC	Bs) Surroga	tes:							
Decachlorobiphenyl	190258-1	50 ug/Kg	109	15.5-146	G10120	11May15 0948 by 285	11May15 1550 by 306		
	190258-1	50 ug/Kg	84.6	15.5-146	G10120	11May15 0948 by 285	11May15 1605 by 306		

LABORATORY BLANK RESULTS

				QC			
Analyte	Result	_ RL	PQL	Sample	Preparation Date	Analysis Date	Qua
Electrical Conductivity	< 2 umho/cm	2	2	W51891-1	12May15 1045 by 93	12May15 1245 by 93	
Cation-Exchange Capacity	< 0.1 meq/100g	0.1	0.1	W51889-1		12May15 0840 by 308	
Total Solids	< 0.01 wt %	0.01	0.01	W51868-1	08May15 1501 by 100	11May15 1014 by 100	
Volatile Solids	< 0.01 wt %	0.01	0.01	W51868-1	08May15 1501 by 100	11May15 1014 by 100	
Ammonia as N	< 2 mg/Kg	2	2	W51881-1	11May15 1222 by 93	11May15 1823 by 93	
Total Kjeldahl Nitrogen	< 10 mg/Kg	10	10	W51885-1	11May15 1648 by 308	12May15 1243 by 308	
Arsenic	< 5 mg/Kg	5	5	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Cadmium	< 0.4 mg/Kg	0.4	0.4	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Copper	< 0.6 mg/Kg	0.6	0.6	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Lead	< 4 mg/Kg	4	4	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Magnesium	< 3 mg/Kg	3	3	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Molybdenum	< 0.8 mg/Kg	8.0	0.8	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Nickel	< 1 mg/Kg	1	1	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Phosphorus	< 10 mg/Kg	10	10	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Potassium	< 100 mg/Kg	100	100	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Selenium	< 7 mg/Kg	7	7	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Zinc	< 0.2 mg/Kg	0.2	0.2	S38914-1	11May15 1541 by 313	12May15 1425 by 302	
Mercury	< 0.1 mg/Kg	0.1	0.1	S38909-1	11May15 1050 by 313	11May15 1320 by 302	
Nitrate as N	< 0.5 mg/Kg	0.5	0.5	C17697-1	08May15 0906 by 07	08May15 1212 by 07	
Nitrite as N	< 0.5 mg/Kg	0.5	0.5	C17697-1	08May15 0906 by 07	08May15 1212 by 07	
Polychlorinated Biphenyls (PCBs)							
PCB 1016	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1221	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1232	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1242	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1248	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1254	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
PCB 1260	< 0.013 mg/Kg	0.013	0.013	G10120-1	11May15 0948 by 285	11May15 1520 by 306	
Polychlorinated Biphenyls (PCBs) Surro	gates:						
Decachlorobiphenyl (7.20-146%)	83.4 %			G10120-1	11May15 0948 by 285	11May15 1520 by 306	

Attention Address	n tax · :		• .						ľ				,					٠.											FORM (coeo .
ed result All	its requested in contract with	-	•	**			- - -		_			shed A	es al	h	100	为	5/	8/	15		300	IR		ved	h	gh	m		5-6	2-13
	G P Glass	ne Pleas	P = Plas S = Suffi e circle)	ric ac	id pi	12	!	N=N	ank:	acki Refit	The state of	shed		R			Date	The	10		10	17		W	מנ	·	B	Dian	5/6/	154
•		Prese	nestvo		\Box		_	V=	/OA	vista	1	Ц		_	H	I=H	C H	pH	H12	1				ZP	Z	CO		losuff to ·		
		-	er Type	H	-			コ	P	#	F	П	7	H	+	+	+	+	H	+	Н	土	廿		Į	#	Bu	der.	-	
			<u> </u>	H	-	1	7			1	T						Ц	1	4	1	Ц	4	H	H	+	+	F-		0	<u> </u>
	· · ·			H		\dashv					T	П	\cdot				L!	Ŀ	Ц	1	Ц	+	Н	Н	4	+	+			
	· .					\vdash				1	T	П			\cdot		Ц	1	Ц	1	Ц	1	1	H	4	+	╀	<u>. </u>		
				-		\vdash		•		1	T	1.1	1				Ц	1		1	L	4	1	Н	4	+	÷			
	<u>.</u>		 -	-	-		_	.,	•	1.	1	П		I			Ц	1	Ц	1	1	4	1			+	+	· ·		
cal.	io Rock	516/15	5 1931	IV	-	-	7			T	T			1			Ц	1	Ц	1	1	Ц	+		Н	1	+	·.		
Identifi	cation	Collecte	4	1	P	R	1./		1	V	A	17	1	11	V	10	1/	10	44	4	14	4	1	V	4	1	+			
A STATE OF THE PARTY OF THE PAR	sica f	Dister I		R	M	E	3		ES	9	35	17	4	3	H	\$2	P	مان	7	7	重	7	2/2	Sodie	3	7	+	÷	Rema	. <u>etn</u>
1	Matt	15,		G	C	A	SO		T		7		Senic		400	80	Phosobrous	8	387	29	13	3	1		4101	770	1		5,4	
ence:	0/1 /1	n		_		W	ATF	X	0		Spligs	9 4	Ų.	CKAI IN NO	1	7	, La	35 mm	Solum Inc.	ercur	NE ST	3	1			ic.a	R	ecely	ed Terr	eratur
1	MCE	•	-		٠.	S	AMP	LE:	В		5	20110		1		Silm	503	Z .	4	1	K	A SO STORY	Lens N			Jectical Conlins	-	anie	:	_
	MIT	· ·		•	٠.	PO	No.		NO OF	П	Ī	53	П	T	П	L.	SRI				1		1	5		1	Ā	VC P	9630	L NO

. ...

5/01 ..

APPENDIX 3: CALCULATIONS

P.O. Box 34087 • Little Rock, Arkansas 72203-4087 501-371-0272 • FAX 501-371-9932

Job No	Sheet/_ I
Project	ACRE-YR CALCS
Prepared By	Date: _5-2.1-2015

	Ollecked by	Date:
1) Assume Dry Sludge Density is Dry Sludge Density =	= 8% of Wet Slud	lga Dans 1/47 (1400 19/13)
117 Kg 12 2.804 1 2.804 1 2.804 2 200		
2) East Location DRY TON/ALRE-YI Dry Studge Vol = 51 cy/yr Acreage = 22.43 ACRE	R	
51 = 4.09439 TON/4 = 4.814 TON/ 4.814 TON/4 = 2.2146 DREY TON/ACE		
3) North Gocation DRYTON/ACRE-Y	Y.c.	
Dry Shidge Vol = 36°4/4R Acreage = 19.91 ACRE		t Sludge Applied = 22000 .0049511 cy .09459TON TR 124 1C4
36 4/4 · . 09439 TONEY = 3.3980		= . SILA DRYTON ACREME
3.39904 TONYR = 1707 DRYTON/ACRE		. 687 DRYTON ACRE-YR

mre	- McCLELLAND
IIILE	CONSULTING
DESIGNED TO SERVE	ENGINEERS, INC.

P.O.	Box	34087 • Little Rock, Arkansas	72203-4087
TO1	271	0272 - FAV FOT 271 0022	

JOD NO	Sneet/_1
Project Nitrogen	Calculations
Prepared By	Date:

P.O. Box 34087 • Little Rock, Arkansas 722	4087	
501-371-0272 • FAX 501-371-9932	Checked By	Date:

-371-0272 • FAX 501-371-9932 Calico Pock		Checked By	Date:
2014 Ammonia as N	83 00mg/kg	= 8300 %	9/kg x.00Z = 16.6 18/TON
Total KjeldahlN	111111111	1 1 1 1 1 1 1	V/42 x . COZ = 90 /70N
Nitrate as N	47 mg/kg		x .00Z = .004 16/TON
Nitrite as N	< Zmg/kg	= 2 mg/15	, x , 00 Z = . 004 16/Tol
Org N° = TKN	(Nitrate + Ammo	ni=) = 45005%	g-(z-7/g+8300°9/g)
٩عام، ٤٠			
36698	.00Z = 73.4 16	ēN	
	VE Mineralization Ro		
	VR Mineralization Ra		
	VR Mineralization P		
Kmin = .04 (3-4 Knol = 0.5	VR Mineralization	(A)	
PAN= Nifrate +1	(Kvol - Ammonia)+ K	min (Org. N ²)	
	5 · 16.6 400)+ .30		50.324 15/TON
	Namu/		SW-TZ
	30.324 15/20N = ZO. 81/A		215 x 30.324= 6.5 4/ALAE-

TOTAL NITROGEN . 687 x 73.4 = 50.4 16/ACPE-YR

.215 x 73.4= 15.8 1/ACRE-VR

Job No	Sheet	12

Project _	N. trogen	Calcu	lations

Prepared By	Date: 5-15	-15

P.O.	Box	34087	•	Litt	le R	ock,	Arkansas	72203-4087
CO1	271	0272 -	r	AV	F01	271	0022	

501-371-0272 • FAX 501-371-9932	Conversion	Checked By	Date:
Colico Rock 2013	factor		

Ammonia as N	2000 7/4 =	4 HON		
TKN	12000 mg/mg =	24 16/TON		
Netrate	4.8 7/2 =			
	1 1 4 5 1 1 1 1 1 1	: : : :		
Netrite	4.8 mg/kg =	,0016 7108		

	0	a	N	2=		ΓK	N	- ((Ni	tra	_t e	+	A,		-	لم) =	12	o	0	- (.8	+	200	6	2	99	19.2	~0/kg	L
:		٥		1	:			1		:	-				!			1	:				1	:						1
. :													. J		i													74		
;														4										;		_	7 0	10/		
.:										.1					·							i	. i	.:		-	~0	FON		

177	14-14-1			Ye				
1Km	- 3	.15	(1-200	Minara	ulizatio	- Rate)	
			7			.,,		

PAI	N :	=	N.+	rai	te.	+ (K	iol	·A	nn	•	(ام	+	K	nin	(0,	31	/5)		į.,
 		2	.00	316	Hon	1+	(.5		412	YON)+	.15	(24"	TON)=	5	ما ان ما	16/TON	
 															ļ	1				-1

2014 Calico Rock Sludge Land Application Summary

	Concentration	Conversion		North Dry Ton	North	East Dry Ton	East		
Parameter	(mg/Kg)	Factor	# Per TON	/Acre-Yr	(#/Acre-Yr)	/Acre-Yr	(#/Acre-Yr)	North (#/Yr)	East (#/Yr)
Arsenic	5	0.002	0.01	0.687	0.0069	0.215	0.0022	0.137	0.048
Cadmium	0.4	0.002	0.0008	0.687	0.0005	0.215	0.0002	0.011	0.004
Cooper	200	0.002	0.4	0.687	0.2748	0.215	0.0860	5.471	1.929
Lead	4	0.002	0.008	0.687	0.0055	0.215	0.0017	0.109	0.039
Mercury	0.33	0.002	0.00066	0.687	0.0005	0.215	0.0001	0.009	0.003
Molybdenum	5.3	0.002	0.0106	0.687	0.0073	0.215	0.0023	0.145	0.051
Nickel	11	0.002	0.022	0.687	0.0151	0.215	0.0047	0.301	0.106
Selenium	7	0.002	0.014	0.687	0.0096	0.215	0.0030	0.191	0.068
Zinc	250	0.002	0.5	0.687	0.3435	0.215	0.1075	6.839	2.411
PCB-1254	0.041	0.002	0.000082	0.687	0.0001	0.215	0.0000	0.001	0.000
PCB-Decachlorobiphenyl	114	0.002	0.228	0.687	0.1566	0.215	0.0490	3.119	1.100
Nitrate	2	0.002	0.004	0.687	0.0027	0.215	0.0009	0.055	0.019
Nitrite	2	0.002	0.004	0.687	0.0027	0.215	0.0009	0.055	0.019
Ammonia	8300	0.002	16.6	0.687	11.4042	0.215	3.5690	227.058	80.053
TKN	45000	0.002	90	0.687	61.8300	0.215	19.3500	1231.035	434.021
Total Phosphorus	13000	0.002	26	0.687	17.8620	0.215	5.5900	355.632	125.384
Total Potassium	1400	0.002	2.8	0.687	1.9236	0.215	0.6020	38.299	13.503
Sodium Absorption Rate	2.1								
Total Solids	31								
pH	6.9								

2013 Calico Rock Sludge Land Application Summary

	Concentration	Conversion		North Dry Ton	North (#/Acre-	East Dry Ton	East (#/Acre-	North	East
Parameter	(mg/Kg)	Factor	# Per TON	/Acre-Yr	Yr)	/Acre-Yr	Yr)	(#/Yr)	(#/Yr)
Arsenic	5	0.002	0.01	0.497	0.00497	0.401	0.00401	0.099	0.090
Cadmium	0.4	0.002	0.0008	0.497	0.0003976	0.401	0.0003208	0.008	0.007
Copper	74	0.002	0.148	0.497	0.073556	0.401	0.059348	1.464	1.331
Lead	4	0.002	0.008	0.497	0.003976	0.401	0.003208	0.079	0.072
Mercury	0.1	0.002	0.0002	0.497	0.0000994	0.401	0.0000802	0.002	0.002
Nickel	5.2	0.002	0.0104	0.497	0.0051688	0.401	0.0041704	0.103	0.094
Selenium	7	0.002	0.014	0.497	0.006958	0.401	0.005614	0.139	0.126
Zinc	100	0.002	0.2	0.497	0.0994	0.401	0.0802	1.979	1.799
Nitrate	0.8	0.002	0.0016	0.497	0.0007952	0.401	0.0006416	0.016	0.014
Nitrite	0.8	0.002	0.0016	0.497	0.0007952	0.401	0.0006416	0.016	0.014
Ammonia	2000	0.002	4	0.497	1.988	0.401	1.604	39.581	35.978
TKN	12000	0.002	24	0.497	11.928	0.401	9.624	237.486	215.866
Total Phosphorus	3700	0.002	7.4	0.497	3.6778	0.401	2.9674	73.225	66.559
Total Potassium	790	0.002	1.58	0.497	0.78526	0.401	0.63358	15.635	14.211
Total Solids	63								
pH	8.4								

Calico Rock Sludge Land Application Summary

Parameter	North	East
Arsenic	0.236	0.138
Cadmium	0.019	0.011
Copper	6.936	3.260
Lead	0.189	0.111
Mercury	0.011	0.005
Molybdenum	0.248	0.145
Nickel	0.439	0.232
Selenium	2.171	1.866
Zinc	6.855	2.426
PCB-1254	0.017	0.015
PCB-Decachlorobiphenyl	42.700	37.077
Nitrate	237.541	215.886
Nitrite	73.280	66.578
Ammonia	242.692	94.264
TKN	1231.035	434.021
Total Phosphorus	355.632	125.384
Total Potassium	38.299	13.503
Sodium Absorption Rate		
Total Solids	47	
pН	7.65	

APPENDIX 4: LAND APPLICATION SUMMARIES
APPENDIX 4: LAND APPLICATION SUMMARIES

Annual Report

ADOC-North Central Arkansas Unit

Statement Required For Record Keeping

"I certify under penalty of law, that the requirements under Regulation 503 (40 CRF Part 503) for the Land Application of Sludge from Treatment Works Treating Domestic Sewage under Class A- Alternative 4 (503.32); (Tecal coliform- 9222D). (Helminth Ova-LPiV6- 1-97-014). (Recovery of Viruses from Suspended Solids In Water and Wastewater-951-0 F) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the requirements have been met I am aware that there are significant penalties for false certification, including the possibility of fine and imprisonment."

Danny Blankenship Maint. Supervisor

Dy 0)-

Date	Loads Hauled	Cubic Yards	Location
1-30-15	2	6	EasT
2-6 15		3	Last
2-12-15	2	6	Cast
3-3 15		3	Cast
3-6-15	5 Liguid	3000 gal	north
3-10-15	7 Ligned	4200 901	norTh
	4 Ligard	2400 gal	norTh
3-17-15	10 L'guid	6000 gal	norTh
3-30.15	11 Light	4600 20	norTh
JE 13	J	15	East

Statement Required For Record Keeping

"I certify under penalty of law, that the requirements under Regulation 503 (40 CRF Part 503) tor the Land Application of Sludge from Treatment Works Treating Domestic Sewage under Class A- Alternative 4 (503,32); (Fecal coliform- 9222D). (Helminth Ova-EPiV6-/1-97 014). (Recovery of Viruses from Suspended Solids In Water and Wastewater-951 0 F) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the requirements have been met I am aware that there are significant penalties for false certification, including the possibility of fine and imprisonment."

Danny Blankenship Maint. Supervisor

Date	Loads Hauled	Cubic Yards	Location
3-20-14	6	18	East
10-24-14	6	18	NoiTh
12.30-14	6	18	norTh

Donath of

SLUDGE REMOVAL

	SLUL	IGE REMOV	AL 2013
DATE	LOADS HAULED	CUBIC YARDS	
1-3-13	3 LORDS Dry	6	E SECTOR
2-8-13		lo	
4-8-13	2 Lords Dry	4	N. Sector
4-30-13	4 / LAIS DOLL	8	N. Sector
8-14-13	y Loods Dry	6	E. Sector
21-20-13	3 Leads Day	8	N SECTOR
-		- b	E BECFOL
	The second secon		
		10 1111	- 7/1
		4-2 CY you	10/al
			ļ
	420 A DUSTA	7 /00	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	42 cuyd X 0.45 Tons	- 18.9	dry lons lotal
			
	East Sector	0	Letter 1
	Last Sector	20CV X 0, 45	Tons/ox = 9.0 day Tons
	North Sector		
	2001	22cy X 0, 45	Tons/ox = 9.9 day Tons
			' '
-			
	, , , , , , , , , , , , , , , , , , , ,		
	AND THE PARTY OF T		
			
			
			
-			
	7 2 2 2 2 2 2 2		
			-